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Abstract. The active fraction of soil organic carbon (SOC) is an important component of soil health and often is quickly 

assessed as the amount of CO2 released by re-wetting dried soils in short-term (24−72 h) assays. However, soils can lose 

carbon (C) as they dry and if soil samples vary in moisture content at sampling, differential C loss during the pre-assay dry-

down period may complicate interpretations of C availability. We examined pre-assay CO2 loss and its influence on apparent 

C availability in the same soil at initial moisture contents of 30, 50, and 70% water-filled pore space (WFPS). We found that 15 

50 and 70% WFPS treatments lost more C during drying than those in the 30% WFPS treatment, which led to a 26−32% 

underestimate of C availability in wetter soil. We developed a soil-specific correction factor to account for these initial soil 

moisture effects. Future C mineralization studies may benefit from similar corrections. 

1 Introduction 

The pulse of CO2 following the re-wetting of dried soils (Robertson et al., 1999; Franzluebbers et al., 2000) has been widely 20 

used to indicate soil C availability because of its association with soil microbial biomass C and the active fraction of SOC. 

This method is derived from the “Birch Effect,” whereby re-wetted dry soils release a pulse of CO2 resulting from increased 

microbial activity (Birch, 1958). Drought stress drives microbial communities to dormancy or death (Borken and Matzner, 

2009), and following the reintroduction of moisture, microbes burst or release solutes to avoid bursting (Schimel et al., 2007), 

which stimulates C mineralization (Kim et al., 2012).  25 

 

Although the short-term pulse of CO2 following the re-wetting of dry soils is a widely used method for assessing soil C 

availability (e.g., Culman et al., 2013; Ladoni et al., 2016; Morrow et al., 2016; Sprunger and Robertson, 2018), we are unaware 

of efforts to quantify the potential bias introduced by assaying soils of different moisture contents at the time of sampling. 

Soils that differ in moisture will dry down at different rates, potentially losing different amounts of available C prior to the 30 

start of the assay. If sufficiently large, differential pre-assay losses could complicate comparisons of C availability across field 

treatments or landscape catenas. 
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Here we investigate the influence of different initial soil moisture levels on pre-assay CO2 release during drying for an Alfisol 

soil in the upper Midwest, USA. We test the hypothesis that moister soil will have higher pre-assay CO2 loss because a longer 

dry-down period results in more time for such losses to occur.  35 

2 Materials and methods 

2.1 Site description 

We collected soil from the Ap horizon (0−20 cm) of an arable grass field at the W.K. Kellogg Biological Station (KBS) in 

Hickory Corners, MI (42°41’02” N, −85°37’34” W). KBS soils are mixed, mesic Typic Hapludalfs of co-mingled Kalamazoo 

and Oshtemo series (Crum and Collins, 1995) developed on glacial outwash with intermixed loess (Luehmann et al., 2016). 40 

Soil collected in September 2019 for this experiment was from the Kalamazoo series, which describe well-drained fine-loams 

(43% sand, 38% silt, 19% clay) with ~2% total C (Grandy and Robertson, 2006) and a pH of 7.2 (Robertson et al., 1993). 

Average annual rainfall at KBS is 1005 mm, average annual snowfall is 1300 mm, and mean annual temperature is 10.1°C 

(Robertson and Hamilton, 2015). The site was in various corn-soybean-wheat rotations for the past 40 years and before that, 

corn-soybean-small grain rotations for at least 60 years. 45 

2.2 Experimental design 

To examine the influence of initial soil moisture on the pre-assay loss of CO2 during dry-down, we pre-wet recently collected 

soil to three different initial water-filled pore space (WFPS) levels: 30, 50, and 70%. Then we measured gravimetric soil 

moisture (GSM) and CO2 loss while soil was air-drying, after which we re-wet them and measured the 24-hr CO2 pulse by 

standard methods (Robertson et al., 1999; Franzluebbers et al., 2000).  50 

2.3 Laboratory analyses 

After collection, soil was sieved through a 4-mm mesh and mixed. We measured gravimetric soil moisture (GSM) and 

calculated the target volumetric water content (VWC, g H2O cm-3 soil) for each treatment following Eq. 1 (Elliott et al., 1999):  

VWC = WFPS/100 * (1− SBD/2.65)         (1) 

where soil bulk density (SBD) was 1.5 g soil cm-3, a previously assessed value from KBS soils (Robertson, 2016). Then we 55 

divided VWC by SBD to obtain a target GSM and thereby determined the amount of water to add to the field-moist soil (11% 

WFPS; GSM = 0.032 g H2O g-1 dry soil). We then weighed 40 g of soil into each of 75 specimen cups. Each cup was randomly 

assigned to an initial WFPS treatment (30, 50, or 70%), for a total of 25 replicates per treatment. We added sufficient deionized 

water to each cup to achieve the target initial WFPS and stirred to evenly distribute water. After soil was wet and stirred in the 

specimen cups, the contents of each cup were transferred to a labeled paper bag. The soil was spread evenly across the bottom 60 

of the bag, and the top portion of the bag was cut off to increase air flow. Afterwards, the soil was immediately weighed and 

set on a laboratory bench to air-dry. 
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Immediately after wetting, as well as 1, 3, and 8 days later, we assessed GSM and CO2 loss rates for five replicates per initial 

WFPS treatment. GSM, which was determined after drying the soil at 105°C for 24 hrs, stabilized at 1.5% in the air-dried soil 65 

(Fig. 1a), but did not reach zero even when soil was completely air-dry. Because soil in all initial WFPS treatments were air-

dry by day 3, with CO2 loss rates close to zero, we terminated GSM and CO2 measurements after day 8.  

 

CO2 loss rates at each sampling interval were measured by placing 10 g of soil into a 235 mL mason jar equipped with a gas-

sampling septum. Then we sampled 5 mL of headspace from each jar at 4 intervals (0, 0.5, 1, and 2 hr), injected it into an 70 

evacuated 3 mL exetainer (Labco Limited, Lampeter, Wales, United Kingdom), and replaced the jar headspace with laboratory 

air. CO2 samples were analyzed within 24 hrs using a LI-820 CO2 Gas Analyzer (LI-COR Biosciences, Lincoln, NE, USA). 

 

On day 15 we re-wet the remaining five replicates of air-dried soil from each initial WFPS treatment to 50% WFPS 

(Franzluebbers et al., 2000). We then assessed subsequent 24-hr CO2 pulses by sampling headspaces at 0, 2, 4, 8, and 24 hrs.   75 

2.4 Statistical analyses and correction factor 

CO2 pulses were calculated as the positive slope of the linear regression of CO2 concentrations through time after accounting 

for headspace dilution, and then converted to a standardized rate using the ideal gas law. In 17 of 75 cases, we omitted one of 

the four data points within a jar, which were clear visual outliers. In two cases, we rejected jars with leaks. CO2 loss rates 

during the dry-down period were analyzed with a two-way analysis of covariance (ANCOVA), where initial WFPS treatment 80 

and days elapsed since wetting were factors and GSM at the time of sampling was a covariate. Additionally, a one-way analysis 

of variance (ANOVA) was used to determine whether initial WFPS treatment had an effect on the 24-hr CO2 pulses upon re-

wetting the air-dried soil.  

 

We also calculated a correction factor to account for pre-assay CO2 loss prior to the 24-hr CO2 pulse assay. To calculate the 85 

total amount of CO2 loss during dry-down for each initial WFPS treatment, we calculated a best-fit exponential decay curve 

(Y = αβX + θ), where Y = daily CO2-C loss and X = length of dry-down period, until soil was air-dry (i.e., immediately after 

wetting through day 3). Total C loss was equivalent to the area under the curve. 

 

Because we used sacrificial sampling, we could not calculate standard deviation or standard error in the usual way. Instead, 90 

we used a bootstrapping approach in which we computed predicted values for CO2 losses (Ŷi) and residuals (ei = Yi – Ŷi). All 

zeroes for CO2 losses were set to 1 for the sake of fitting the regression because an exponential decay curve can approach but 

never attain 0 and because 1 was lower than any value we observed. Then we created a bootstrap sampling of residuals specific 

to each dry-down interval (0, 1, or 3 days), sampled randomly from each interval with replacement, and added randomly 

sampled residuals to predicted values (Yi
* = Ŷi + ei

*) for each dry-down interval (after Hesterberg, 2015). Residuals were 95 
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bootstrapped 10,000 times to derive multiple estimates of coefficients for the exponential decay curve (α, β, and θ). We also  

integrated under the curve 10,000 times to get an error estimate (i.e., coefficient of variation) associated with the total amount 

of pre-assay CO2 loss during dry-down. 

 

Then we divided the total CO2 loss by three days to obtain the daily rate used to calculate a correction factor following Eq. 2: 100 

CF = (daily CO2 loss during dry-down / 24-hr CO2 pulse after re-wetting) + 1     (2) 

The correction factor for each treatment was then multiplied by each replicate’s 24-hr CO2 pulse following re-wetting. Finally, 

we verified that the correction factors worked by conducting a one-way ANOVA to determine whether initial WFPS treatment 

still had an effect on the corrected pulses. For all analyses, we confirmed that assumptions of normality and homogeneity of 

variance were not violated. 105 

3 Results 

Soil in the 50 and 70% WFPS treatments took longer to dry than did soil in the 30% WFPS treatment (Fig 1a). A day after 

wetting, soil from the 30% WFPS treatment was completely air-dry, but soil had lost only 79% and 68% of its initial moisture 

in the 50 and 70% WFPS treatments, respectively. All soil was air-dry by three days after wetting. Pre-assay CO2 losses  

Fig 1. (a) Gravimetric soil moisture (GSM) during air-drying and (b) daily CO2 losses from each initial water-filled pore space 110 
(WFPS) treatment during the dry-down period. Error bars represent standard errors of the mean.  

mirrored soil moisture loss, reaching zero for all WFPS treatments by day 3 (Fig 1b). Both GSM at the time of sampling and 

day had effects on pre-assay CO2 loss rates (P < 0.0001), but initial WFPS treatment did not (P = 0.28) probably because GSM 

captures more variation in soil moisture as the soil dries than WFPS treatment. However, there was an interaction between 

treatment and day (P = 0.0005). Soil of even the lowest initial WFPS treatment lost C as CO2 over three days of drying (26 µg 115 
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CO2-C g−1 soil for 30% WFPS), but losses were disproportionately higher from wetter soil (62 and 71 µg CO2-C g−1 soil for 

50 and 70% WFPS, respectively).  

 

Initial soil moisture (i.e., WFPS treatment) had a significant effect on 24-hr CO2 pulses after re-wetting air-dried soil (P =  

0.007; Fig 2). While final CO2 pulses were lower for the 50 and 70% WFPS treatments relative to 30% WFPS (Fig. 2), the 50  120 

Fig 2. 24-hr CO2 pulses after the re-wetting of air-dried soil for each initial water-filled pore space (WFPS) treatment. Error bars 

represent standard error of the mean.   

 

and 70% WFPS treatments also tended to have greater pre-assay CO2 losses during three days of dry-down, which represented 

77 and 95% of their 24-hr CO2 pulses, respectively. After accounting for these losses with correction factors, the 24-hr CO2 125 

pulses were similar across initial WFPS treatments (P = 0.28; Fig. 3).  
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Fig 3. Daily CO2 production rates for each initial water-filled pore space (WFPS) treatment. Lined bars represent the average daily 

rate of pre-assay CO2 loss during a 3-day dry-down period and solid bars represent the 24-hr CO2 pulses after re-wetting the air-

dried soil. Together both bars represent the 24-hr CO2 pulse corrected for pre-assay losses of CO2 during dry-down. Error bars 130 
represent standard deviation as described in the “Statistical analyses” section. 

4 Discussion 

Initial soil moisture levels played a significant role in our ability to accurately characterize soil C availability (Fig 2) via the 

conventional 24-hr CO2 pulse assay (Robertson et al., 1999; Franzluebbers et al., 2000). Wetter soil lost more C during dry-

down, presumably because soil microbes remained active for a longer period of time. These losses decreased the short-term 135 

CO2 pulses and therefore the final estimates of soil C availability.  

 

Without knowledge of these losses, one might erroneously conclude that soil from the 30% WFPS treatment had about 35% 

higher soil C availability than the others (Fig 2), but this trend is instead due to higher pre-assay CO2 losses during the dry-

down period for wetter soil (Fig 3). It is striking that even short drying intervals (i.e., 1 versus 3 days) can affect soil C 140 

availability as deduced from the 24-hr CO2 pulse after re-wetting air-dried soil.  However, we were able to account for the pre-

assay CO2 losses for our soil with a correction factor that made C availability approximately equivalent across all initial WFPS 

treatments. 

 

These trends suggest that efforts to characterize C availability via short-term CO2 pulses following the re-wetting of dry soil 145 

should exercise caution if comparisons involve soils with a range of initial soil moistures. This includes soils compared across 

seasons; across drought, precipitation, or irrigation gradients; across landscape catenas; across crop, grazing, or forest 
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management practices; and as well in cross-site comparisons and meta-analyses that include soils collected at different initial 

soil moistures.  

 150 

A correction factor that accounts for pre-assay CO2 losses may help to normalize such comparisons. In our soil, pre-assay CO2 

losses led to a C mineralization bias as high as 32%, for which we could confidently correct by applying a correction factor 

based on measured rates of pre-assay CO2 loss (Eq. 2). Other soils with moisture contents sufficient to oxidize available C 

during dry-down will require different correction factors. A soil-specific correction factor can be calculated by measuring CO2 

loss during dry-down on a subset of samples, as we described above (Eq. 2).  155 

 

An alternate solution is to minimize the dry-down period such that little available C is lost prior to the assay. Strategies to 

minimize pre-assay CO2 loss might include exposing soils to temperatures high enough to speed evaporation, but low enough 

to avoid sterilization (Jager, 1968) or otherwise artificially disrupt the microbial community (Evans and Wallenstein, 2012).  

This could be performed in a closed vented chamber such as a soil incubator. Alternatively, faster and more even drying might 160 

be achieved with a steady flow of air (i.e., a fan or vented system) over exposed soil samples. Even with faster drying, however, 

a correction factor may be needed.  

 

Overall, our results demonstrate that using the 24-hr CO2 pulse following the re-wetting of a dried soil to evaluate soil C 

availability can be misleading for soils with different moisture contents at time of sampling. For such soils a correction factor 165 

based on pre-assay CO2 losses can be applied with confidence.  
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